

Integrated GNSS/INS Fusion Navigation System ARS690R **Technical Manual**

V1.0

Integrated GNSS/INS Fusion Navigation System

APPLICATIONS

FEATURES

- Multi-Constellation RTK: BDS/GPS/Galileo/GLONASS/QZSS
 | 0.8 cm H / 1.5 cm V accuracy.
- Dual-Antenna Heading: 0.05° static | EMI-hardened for harsh zones.
- 200 Hz IMU: Seamless GNSS outage navigation via kinematic modeling.
- Drift Control: <0.2% over 1 km | Odometry fusion cuts drift 10x vs. GNSS-only.
- 500 Hz + CAN FD/Ethernet: Ultra-low latency for AVs/robotics.
- Post-Process to mm: Raw data logging; Sub-meter
 PPP without RTK.
- 200g Rugged (IP65): For drones, AGVs, harsh sites.

ARS690R

- Autonomous Vehicles: Lane-level navigation for self-driving cars; obstacle detection in urban canyons.
- Agriculture & Precision Farming: Autonomous tractor guidance; crop health mapping via drone integration.
- Construction & Heavy Machinery: Grade control for excavators; crane/swing-arm anti-collision systems.
- Marine & Offshore: Offshore platform navigation; underwater ROV positioning.
- Drones & Aerial Surveying: Centimeter-accurate LiDAR/Photogrammetry for 3D mapping.
- Geospatial & Infrastructure: Bridge deformation monitoring; railway track alignment.

DESCRIPTION

The ARS690R is a next-generation **Integrated GNSS/INS Fusion Navigation System** engineered for industries demanding uncompromising precision. By fusing multi-constellation RTK signals, dual-antenna heading correction, and high-frequency inertial data, it delivers **continuous centimeter-level accuracy**—even in urban canyons, tunnels, or dense foliage.

Precision Engineered for Critical Applications:

- RTK-Enhanced Positioning: Leveraging full-frequency BDS, GPS, Galileo, GLONASS, and QZSS signals, the ARS690R performs realtime kinematic corrections to achieve 0.8 cm horizontal / 1.5 cm vertical accuracy—ideal for autonomous vehicles, precision agriculture, and aerial surveying.
- **Dual-Antenna Heading Optimization:** Dual GNSS antennas provide **0.05° static heading accuracy**, eliminating reliance on magnetic sensors and ensuring reliability in electromagnetic interference (EMI)-heavy environments.
- Seamless Inertial Navigation: When GNSS signals degrade, the system transitions to 200 Hz IMU-driven navigation, aided by vehicle kinematics and proprietary divergence suppression algorithms. With odometry fusion, positional drift is reduced to <0.2% over 1 km—10x tighter than conventional GNSS-only systems.
- **Tightly Coupled Fusion Architecture:** Deep integration of satellite, inertial, and odometry data through adaptive Kalman filtering ensures **sub-decimeter accuracy** during rapid acceleration, sharp turns, or signal outages.

Why Choose the ARS690R?

- Robust Redundancy: Dual antennas and multi-source fusion guard against single-point failures.
- High Dynamic Performance: 500 Hz output frequency and CAN FD support meet the latency demands of autonomous driving and robotics.
- Post-Processing Flexibility: Raw data logging enables centimeter-accurate trajectory reconstruction for mapping and forensic analysis.

For drones, AGVs, or industrial machinery operating in GPS-hostile environments, the ARS690R sets the benchmark for **always-accurate navigation**.

TECHNICAL PARAMETER

Performance Index

	В	DS	B1I/F	32I/B3I	
		SPS	-	P(Y)/L2C/L5	
Satellite signals		llileo		5a/E5b	
Satemite signals		INASS		/G2	
		ZSS		L1/L2/L5	
	Q.	235			
	Plane		1	.5m	
Single Point Positioning				_	
	Elev	vation		.5m	
DGPS	PI	ane	0.	.4m	
	Elev	vation	0.	.8m	
RTK	Plane		0.8cm	i+1ppm	
	Elev	vation	1.5cm	i+1ppm	
Time to first position	Cold start		<30s		
	Warr	n start	<	15s	
	GNSS raw observation volume		20Hz		
	GNSS RTK positioning		2	0Hz	
Maximum data rate	INS Integrated Navigation Positioning		20	00Hz	
	IMU raw data rate			0Hz	
	Positioning information output		200Hz		
Orientation accuracy	1m dual antenna baseline		0.2°		
Orientation accuracy	2m dual ant	enna baseline	0.1°		
Timing accuracy (RMS)		20	ns		
Velocity accuracy (metric) (RMS)		0.03	m/s		
Speed limit (RMS)		300	m/s		
Observation accuracy (RMS)	BDS	GPS	GLONASS	Galileo	
B1I/B1C/L1C/A/E1/G1 Pseudo-distance	10cm 10cm		10cm	10cm	
B1I/B1C/L1 C/A/E1/G1 Carrier phase	1mm 1mm		1mm	1mm	
B2I/G2/L2P(Y)/L2C/E5b Pseudo-distance	10cm 10cm		10cm	10cm	
B2I/B2a/B2b/L5/E5a/E5 Carrier phase	1mm	1mm	1mm	1mm	

AIT Sensing Inc.

www.ait-sensor.com

Tel: +1 408 3596016

Integrated GNSS/INS Fusion Navigation System

ARS690R

B3I/L5/E5a/B2a Pseudo-distance	10cm	10cm	10cm	10cm	
B3I/L5/E5a/B2a Carrier phase	1mm	1mm	1mm	1mm	
Measuring range of roll/pitch/yaw	Roll±180°, pitch±90°, Yaw 0~360°				
Heading accuracy (with GNSS signal)	0.05° static 0.1° dynamic				
Roll/Pitch (1σ) (with GNSS signal)	0.03° static 0.1° dynamic				
GPS Loss of Lock Accuracy	Position drift (1km or 2min)		0.2%, with odo	meter combination	
(on-board CEP)	Headii	ng drift (1min)	0	.15°	
Gyro range	±400°/s	Gyro Bias Stability		6 °/h (10s smooth) 0.5°/h (Allan variance)	
Accelerometer range	±4 g (default ±2g)	Accelerometer Bias Stability	50ug (10	Os smooth)	
Output frequency	500Hz				

COMMUNICATION INTERFACE

Interface Type

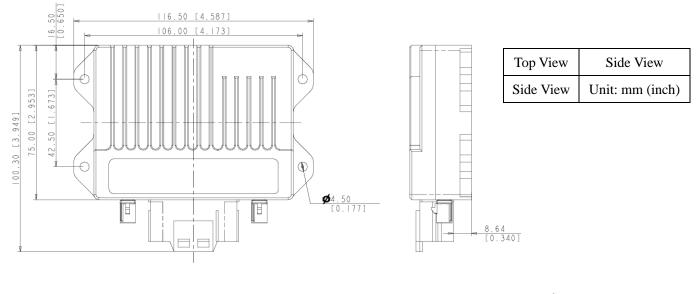
Interface	Connector Type	Description
ANT1	SMA External screw and internal needle	GNSS main antenna interface
ANT2	SMA External screw and internal needle	GNSS secondary antenna interface
Automotive connector	MX23A26	Automotive connector

Serial port settings

Baud rate	8000000/ 460800 / 230400 / 115200 / 19200 / 9600 / 2400	
Data bits	8	
Default configuration	115200 8 1 No checksum	
Serial port optional	RS422(RS485) / RS232	

Other interfaces

Two CAN FD interfaces	
One Ethernet interface	



PRODUCT LIST

Туре	Name	Model	Quantity
Factory standard	GNSS	ARS690R	1
Optional	Antenna	Antenna BT-300 antenna + large base stud + SMA feed cable (5m)	1
Optional	Antenna	Antenna BT-300 antenna + large base stud + SMA feed cable (5m)	1
Optional	4G DTU module	MD-649R	1
Optional	Automotive connector	MX23A26SF1	1
	plug		

DIMENSIONS

Outline Dimensions



Figure 1. Outline Dimensions

www.ait-sensor.com

INSTALLATION AND REQUIREMENTS

Basic Hardware Connection Diagram

Locating the main antenna

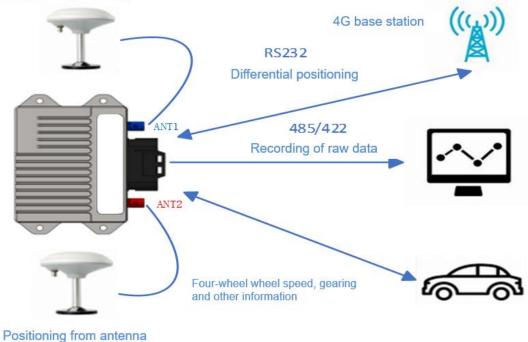


Figure 2. Connection Diagram

Pin Definitions

1	ETH_TX-	Ethernet Pins	14	DGND	Digital Ground
2	ETH_TX+	Ethernet Pins	15	422_R-	422 Communication Pins
3	ETH_RX-	Ethernet Pins	16	422_R+	422 Communication Pin
4	ETH_RX+	Ethernet Pins	17	485_B/422_T-	485/422 Communication Pin
5	DGND	Digital Ground	18	485_A/422_T+	485/422 Communication Pin
6	CANL1	CAN1 Signal Pin	19	DGND	Digital Ground
7	CANH1	CAN1 Signal Pin	20	232TXD	232 Communication Pin
8	DGND	Digital Ground	21	232RXD	232 Communication Pin
9	CANL2	CAN2 pin	22	DGND	Digital Ground
10	CANH2	CAN2 signal pin	23	EVENT	Event Interrupt Output
11	KEY	Positive power supply Device working	24	INT	Event Interrupt Input
12	AGND	Power negative Device stop	25	DGND	Digital Ground
13	POWER_IN	Negative power supply	26	PPS_3.3V	Clock synchronization pulse (3.3V)

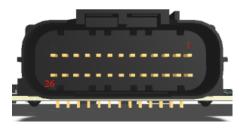


Figure 3. Pin numbering and location diagrams

GNSS Antenna Specifications

The GNSS antenna used by the ARS690R needs to be an active antenna. The ARS690R provides a 5V DC antenna feed and supports a maximum of 200mA current. The recommended or required parameters are listed below:

1. Frequency points to be supported:

GNSS	frequency	GNSS	frequency
BDS	B1I/B2I/B3I	Galileo	E1/E5a/E5b
GPS	L1/L2/L5	QZSS	L1/L2/L5
GLONASS	G1/G2	-	L-band

- 2. Recommended gain: 40dB
- 3. Recommended noise figure: NF<1.5
- 4. Feed: 2.8~5V
- 5. Phase center error: ±2mm.

RF coaxial cable specifications

Master antenna RF coaxial cable should be matched with the impedance of the antenna and receiver, the characteristic impedance is 50Ω , and the recommended line attenuation is less than 10dB. RF coaxial cable connector is adapted to the GNSS antenna at one end, and FAKRA-C connector is adapted to the master antenna interface of ARS690R at the other end.

Slave antenna RF coaxial cable should be matched with the impedance of the antenna and receiver, the characteristic impedance is 50Ω , the recommended line attenuation is less than 10dB. RF coaxial cable connector at one end to adapt to the GNSS antenna, at the other end of the FAKRA-D connector to adapt to the ARS690R slave antenna interface.

Temperature and protection class

ARS690R has the following temperature requirements.

1.Working temperature -40°C~+85°C.

2.Storage Temperature -55°C~+95°C

Protection grade: IP54

Power supply specifications

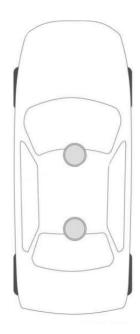
ARS690R requires the following power supply specifications.

- 1. Voltage range +9V~+36V DC
- 2. At least 10W stable output power

AIT Sensing Inc.

Installation of GNSS antenna

The ARS690R is currently available in dual antenna as well as single antenna versions.

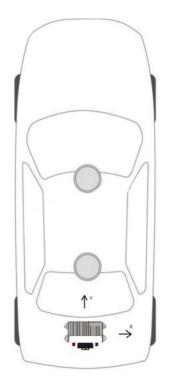

The following considerations apply when installing the GNSS antenna:

1. The GNSS antenna location is open and unobstructed above the carrier.

2. The GNSS antenna is rigidly connected to the carrier to ensure that the antenna will not shake when the carrier is moved.

3. Under dual-antenna mode, it is recommended that the antenna distance is more than 1 meter, and the farther apart the better.

In GNSS dual antenna mode, it is recommended that the baseline of the dual antennas is horizontal to the forward direction of the carrier, as shown in the figure below:



Installation of ARS690R complete machine

In order to improve the accuracy, the IMU should be installed horizontally as close as possible to the main GNSS antenna, and it must be ensured that the ARS690R is rigidly connected to the carrier to ensure that the relative positions of the ARS690R and the antenna on the carrier are fixed. And to ensure that the ARS690R installation is stable and reliable, in the carrier travelling process will not move or shake.

In order to simplify the system configuration, it is recommended that the combination of navigation system ARS690R installed in close proximity to the carrier rear axle position, attitude to maintain a horizontal (i.e., the Z-axis should be perpendicular to the ground pointing upward), the Y-axis of the ARS690R should be pointing in the direction of the forward direction of the carrier (as shown in the figure below).

COMMUNICATION LINK

The ARS690R can use the serial port to communicate with external communication devices. Currently, commands and RTK data can only be sent through the 232 port.

Serial port

The Combined Navigation System ARS690R provides two serial ports as shown below:

serial number	RS-232	RS-485	RS-422
COM1	Support	Not Supported	Not Supported
COM2	Not Supported	Support	Support

Power connection

Pin 1 POWER_IN and pin 3 KEY power enable pin in the connector are connected to the positive side of the power supply, and pin 2 GND is connected to the negative side of the power supply.

Check ARS690R status

After installing ARS690R, turn on the power and send the command UNLOG, it should be noted that when using the serial assistant to send commands, you need to check the box to send a new line to confirm that the ARS690R is running normally, if so, the ARS690R will respond to the following content: Command response: OK.

EQUIPMENT USE

Serial port communication

Ensure that the ARS690R has been installed as described in the previous section and is powered up and working before use.

The ARS690R can communicate with computers and other devices through the serial port. Before the two can establish communication, both ARS690R and computer need to configure the serial port parameters appropriately. The default serial port configuration of ARS690R is:

Command header	Serial device	Serial port parameter	Parameter Description
CONFIG	COM1	Baud rate	Setting the baud rate of the serial port
	COM2		

1.115200bps

2. No parity bit

3.8bit data bits

4.1bit stop bit

5.No parity bit

Only COM1 supports port configuration using the command CONFIG.

An example of modifying the COM1 serial port configuration is shown below:

Directives	Descriptive
config com1 115200	Set com1 baud rate to 115200.
	You can set the baud rate of com1, com2, com3 to any one of
	2400,9600,19200,115200, 230400,460800,8000000 respectively.

The command format is:

CONFIG [serial port device number] [serial port attribute parameter]

Simplified ASCII syntax:

GNGGA GNSS Multi-system Joint Positioning Data

This instruction is used to set the current serial port or the specified serial port to output the result of multi-system joint positioning, and the output information contains the time of the GNSS receiver and positioning related data. The statement starts with GNGGA. Depending on the satellite systems involved in positioning, the output may be GPGGA, BDGGA, GLGGA, GAGGA, GPGGA when only GPS satellite system is involved, GLGGA when only GLONASS satellite system is involved, GLGGA when only Galileo satellite system is involved, GLGGA when only Galileo satellite system is involved. When only the Galileo satellite system is involved, GLGGA when only Galileo satellite system is involved. When only the Galileo satellite system is involved, the positioning solution, the output is in the form of GAGGA.

AIT Sensing Inc.

Output in the form of GAGGA. The output is in the form of GNGGA when only the GLONASS satellite system is involved in the position solution, and in the form of GAGGA when only the Galileo satellite system is involved in the position solution.

Simplified ASCII format:

GNGGA 1 Outputs 1Hz GNGGA information from the current serial port.

GNGGA COM2 1 Outputs a 1Hz GNGGA message at com2.

Message output:

\$GNGGA,025754.00,4004.74102107, N,11614.19532779, E,1,18,0.7,63.3224, M,-9.7848, m, 00,0000*58

GNGGA Data Structure

ID	field	Data Description	notation	typical example
1	\$GNGGA	Log header		\$GNGGA
2	utc	The UTC time to which the location corresponds.	hhmmss.ss	173568.00
3	lat	hh/mm/ss.ss	IIII.II	3251.2654
4	Lat dir	Latitude (DDmm.mm)	а	N
5	lon	Latitude direction (N = North, S = South)	ууууу.уу	12033.3592
6	lon dir	Longitude (DDDmm.mm)	а	E
7	qual	Longitude direction (E = East, W = West)	x	1
8	# sats	GPS Quality Indicator	XX	10
9	hdop	0 = Positioning unavailable or invalid	X.X	1.0
10	alt	1 = Single point fix	X.X	1021.45
11	a-units	2 = Pseudorange Differential or SBAS positioning	М	М
12	undulation	4 = RTK fixed solution	X.X	-17.183
13	u-units	5 = RTK floating point solution	М	М
14	age	6 = Inertial guidance positioning	XX	(00 without differential data)
15	stn ID	7 = Fixed Position for User Setting	XXXX	(00 when no differential data)
16	*xx	Position)	*hh	*3F
17	[CR][LF]	Number of satellites in use. May not match the number seen		[CR][LF]

IMU Raw Data Information

This statement contains an indication of the IMU status and the measured values of the accelerometers and gyroscopes relative to the IMU housing coordinate system.

Command Format.

RAWIMUA COM1 1

	field	Data Description
ID	field	Data Description
1	\$RAWIMUA	Log Header
2	Week	GNSS Week
3	Seconds Into Week	Seconds per week
4	Z Accel Output	Velocity varies along the Z-axis.
5	Y Accel Output	Velocity varies along the Y-axis.
6	X Accel Output	Velocity variation along the X-axis.
7	Z Gyro Output	The amount of angular change in the right-handed helix along the Z-axis.
8	Y Gyro Output	The amount of angular change in the right-handed helix along the Y-axis.
9	X Gyro Output	The amount of angular change in the right-handed helix along the X-axis.
10	*xx	Checksum
11	Pitch	Pitch angle (right hand spiral along X-axis) [degrees]
12	Azimuth	Heading angle, counterclockwise from north (right-handed helix around the Z axis), which is the inertial azimuth calculated by the IMU gyro through a combined filter
13	Status	INS Status
14	XXXX	32-bit CRC
15	[CR][LF]	Statement terminator (ASCII only)

INSPVA Combined Navigation Position, Speed and Attitude Information

Sets up the output of the combined navigation and positioning results, with ASCII statements beginning with "#INSPVA".

Recommended input.

INSPVAA com2 1

INSPVA Data Structure

ID	field	Data Description
1	\$INSPVA	Log Header
2	Week	GNSS Week
3	Seconds	Seconds per week
4	Latitude	Latitude (WGS84) [degrees]
5	Longitude	Longitude (WGS84) [degrees]
6	Height	Ellipsoid height (WGS84) [m]
7	East Velocity	Eastward velocity (negative for southward) [m/s]
8	North Velocity	Northward velocity (negative for westward direction) [m/s]
9	Up Velocity	Velocity in the sky direction [m/s]
10	Roll	Cross-roll angle (right-handed spiral along Y-axis) [degrees]
11	Pitch	Pitch angle (right hand spiral along X-axis) [degrees]
12	Azimuth	Heading angle, counterclockwise from north (right-handed
		helix around the Z axis), which is the inertial azimuth
		calculated by the IMU gyro through a combined filter
13	Status	INS Status
14	XXXX	32-bit CRC
15	[CR][LF]	Statement terminator (ASCII only)

INSPVB Combined Navigation Position, Velocity and Attitude Information

Sets up the output of the combined navigation and positioning results in a binary statement that starts with "#INSPVB".

Recommended input.

INSPVAB com2 1

INSPVB Data Structure

ID	field		data description	typology	Byte Count	ID
					Byte	
					Offset	
1	Synchronization S	amont	0x57	char	1	0
	-	-			_	-
2	Frame Information	٦	0x00	char	1	1
3	Length Segment		0x5B	char	1	2
4	Address Segment		0x00	char	1	3
5	Command Segme	nt	0x03	char	1	4
6	data segment	Week	GNSS Week	Ulong	4	8
		Seconds	Seconds per week	Double	8	16
		Latitude	Latitude (WGS84) [degrees]	Double	8	24
		Longitude	Longitude (WGS84) [degrees].	Double	8	32
		Height	Ellipsoid Height (WGS84) [m]	Double	8	40
		East Velocity	Eastward velocity (negative for	Double	8	48
			southward) [m/s]			
		North Velocity	Northward velocity (negative for	Double	8	56
			westward direction) [m/s]			
		Up Velocity	Velocity in the sky direction [m/s]	Double	8	64
		Roll	Cross-roll angle (right-handed spiral	Double	8	72
			along Y-axis) [degrees]			
		Pitch	Pitch angle (right hand spiral along X-	Double	8	80
			axis) [degrees]			
		Azimuth	Heading angle, counterclockwise from	Double	8	88
			north (right-handed helix around the Z			
			axis), which is the inertial azimuth			
			calculated by the IMU gyro through a			
			combined filter			
		Status	INS Status	Enum	1	89
7		xxxx	32-bit CRC	Hex	4	93

Other commands

Unlog Stop Serial Port Output

This instruction is used to stop the serial port from outputting specific data messages. Configurable parameter [Statement] stops the output of corresponding data information;

Configurable parameter [Port] to stop port output. If no port is specified, the command defaults to the port currently receiving the command; if no message name is specified, the output of all messages will be stopped.

The command format is: UNLOG [port] [message]

Simplified ASCII Syntax

UNLOG Stop outputting all messages for the current port.

UNLOG GNGGA Stop the output of GNGGA statement for the current serial port.

UNLOG COM1 Stop all messages from com1.

UNLOG COM2 GNGGA stops the GNGGA statement output from com2.

The parameters of the Unlog command are as follows:

Command header	port number	Description
UNLOG	COM1	Name of the message that will
	COM2	stop the output

saveconfig Save User Configuration

This command saves the current user configuration.

The command format is: SAVECONFIG

Simplified ASCII syntax:

SAVECONFIG

The parameters of the saveconfig command are as follows

command header	command parameter	descriptive
SAVECONFIG		Save User Configuration

IMU to Main Antenna Lever Arm Parameter Configuration

Use this command to enter the offset between the IMU and the GNSS main antenna phase center, i.e. the inertial guidance to main antenna rod arm parameter. The rod arm parameters should be measured as accurately as possible, especially in RTK mode, and an error of 1 cm is desirable. any error in the rod arm parameters will be directly converted to an error in the inertial navigation system position. x, y, and z represent the vectors from the IMU to the main antenna phase center. To improve accuracy, the IMU should be mounted horizontally so that it is as close as possible to the main GNSS antenna. The IMU position is in the upper left corner of the ARS690R.

www.ait-sensor.com

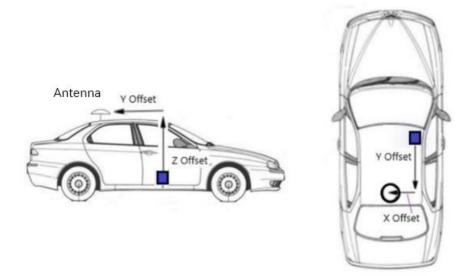


Figure 4.IMU Offset to Antenna Phase Center

Command Format. CONFIG LEVER ARM x y z

Simplified ASCII syntax: CONFIG LEVER ARM 0.05 -1.05 0.03 CONFIG LEVER ARM 0.05 -1.05 0.03

IMU to main antenna arm parameter configuration

		-
Command header	Parameters	Parameter Description
CONFIG LEVER	Х	X-direction offset, unit: meter, range -100~100, retain two decimal places
ARM	Y	Y direction offset, unit: meter, range -100~100, retain two decimal places
	Z	Z direction offset, unit: meter, range -100~100, retain two decimal places

Appendix 2: Binary Protocol Format

synchronization segment 1 Byte	Frame Information 1 Byte	Length Segment 1/2/4 Byte	Address Segment 1/2/4 Byte	Command Segment 1/2/4 Byte	Command Segment 1/2/4 byte	Ending Paragraph 4 Byte
--------------------------------------	--------------------------------	---------------------------------	----------------------------------	----------------------------------	----------------------------------	----------------------------

Data frame description

Name	Length	Description
Synchronized segments	1 Byte	Fixed to 0x57 for data frame synchronization
Frame information	1 Byte	Indicates the information of the data frameBit 7Frame information check, 0 when the number of 1's in Bit6 to Bit 0 is even, 1 when the number of 1's is oddBit 6Reserved, constant 0Bit 5:4Data length of the length segment00:1 byte01:2 bytes02:4 bytes03:ReservedBit 3:2Data length of the address segment00:1 byte01:2 bytes02:4 bytes03:ReservedBit 1:0Data length of the command segment00:1 byte01:2 bytes02:4 bytes03:ReservedBit 1:0Data length of the command segment00:1 byte01:2 bytes02:4 bytes03:ReservedBit 1:0Data length of the command segment00:1 byte01:2 bytes02:4 bytes03:Reserved
Length Segment	1/2/4 Byte	Number of bytes from the address segment (inclusive) to the end segment (inclusive), high byte first, number of bytes determined by Bit 5:4 of the frame information
Address segment	1/2/4 Byte	Address of the target sensor of the data frame, high byte first, number of bytes determined by Bit 3:2 of the frame message. The sensor will only respond if this address is equal to the sensor address or if it is equal to 0
Command segment	1/2/4 Byte	Command message of the data frame, high byte first, number of bytes determined by Bit 3:2 of the frame message. Determines the role of the data frame, the lowest bit is 0 for sending to the sensor and the lowest bit is 1 for returning from the sensor
Data segment	0~n Byte	Data information corresponding to the command segment, typically sensor readings or configuration parameters
Ending paragraph	4 Byte	Parity information of the data frame, CRC parity value from the frame information (included) to the data segment (included), high byte first The CRC information is as follows: Width: 32 bits Polynomial: 04C11DB7 Initial value: FFFFFFF Resulting iso-or: 00000000 Input inverted: No Output inverted: No

Appendix: Record of Changes

2024.5.16V4.1	1. 'Positioning error is kept within 1%' in [Product Description] is revised to 'Positioning error is kept within 1%~2%'.
	2. Improve the measurement range and attitude accuracy in [Performance Parameters], and distinguish between GNSS heading accuracy and inertial
	measurement heading accuracy.
2024.6.14V4.2	1. Add CAN as optional serial port in [Serial Port Settings].
2024.7.17V4.3	1. Remove CAN from the optional serial port in [Serial Port Settings] and add 'Support CAN FD communication protocol' to the main features.
	2.INS combined navigation solution, internal IMU output frequency, positioning information output frequency changed to 200Hz.
	3. Add 'with GNSS signal' after heading accuracy and roll/pitch accuracy.
	4. Change the storage temperature to -55~+95°C.
	5. Delete line 13 'Status' 'INS status' in [INSPVA data structure].
	6. Add description of other interfaces: two CAN FD and one Ethernet in [Communication Interfaces].
	7. Remove com3 from the description of [Modify COM1 serial port configuration example].
	8. Modify the description statement in [Product Description].
	9. Changed 'vertical' to 'horizontal' in [Installation of GNSS antenna].
	10. Modify the hotline to 400-618-0510 in the footer.
2024.8.22V4.4	1. Adjust the pin definition order and replace the 'Pin number and position diagram'.
	2. Revised the voltage range of [Power supply specification] to 9~36V DC.

Mechanical Characteristic

Connector	MX23A26
Protection level	IP54
Shell material	Magnesium alloy sanding oxidation
Installation	Three M4 screws

EXECUTIVE STANDARD

- National Standard for Static Calibration of Biaxial Inclination Sensors (Draft)
- GB/T 191 SJ 20873-2003 General Specification for Tiltmeters and Levelling Devices